
CCNA R&S: Introduction to Networks

Chapter 7: 

The Transport Layer

Frank Schneemann



7.0.1.1 Introduction



7.0.1.2 Class Activity - We Need to Talk ςGame



7.1.1.1 Role of the Transport Layer

The primary responsibilities of transport 
layer protocols are:

Å Trackingthe individual 
communication between applications 
on the source and destination hosts

Å Segmentingdata for manageability 
and reassembling segmented data 
into streams of application data at 
the destination

Å Identifying the proper application for 
each communication stream 



7.1.1.2 Role of the Transport Layer (Cont.)

ÅApplications communicates with one or 
more applications on one or more 
remote hosts. It is the responsibility of 
the transport layer to maintain and 
track these multiple conversations.

ÅTransport layer protocols have services 
that segment the application data into 
blocks of data that are an appropriate 
size 

ÅA header, used for reassembly, is added 
to each block of data. This header is 
used to track the data stream.

Å the transport layer assigns each 
application an identifier. This identifier 
is called a port number. 

ÅEach software process that needs to 
access the network is assigned a port 
number unique in that host



7.1.1.3 Conversation Multiplexing

ÅSegmentation of the data by transport 
layer protocols also provides the means 
to both send and receive data when 
running multiple applications 
concurrently on a computer.

ÅTo identify each segment of data, the 
transport layer adds to the segment a 
header containing binary data. 

ÅThis header contains fields of bits. It is 
the values in these fields that enable 
different transport layer protocols to 
perform different functions in managing 
data communication.



7.1.1.4 Transport Layer Reliability

Å IP is concerned only with the 
structure, addressing, and routing of 
packets. 

Å IP does not specify how the delivery 
or transportation of the packets takes 
place. 

ÅTransport protocols specify how to 
transfer messages between hosts. 

ÅTCP/IP provides two transport layer 
protocols, Transmission Control 
Protocol (TCP) and User Datagram 
Protocol (UDP)

Å IP uses these transport protocols to 
enable hosts to communicate and 
transfer data.



7.1.1.5 TCP

ÅWith TCP, the three basic 
operations of reliability are:

ÅTrackingtransmitted data 
segments

ÅAcknowledgingreceived data
ÅRetransmittingany 

unacknowledged data 
ÅThese reliability processes 

place additional overhead on 
ÅControl data is exchanged 

between the sending and 
receiving hosts. This control 
information is contained in a 
TCP header.



7.1.1.6 UDP

UDP provides just the basic 
functions for delivering data 
segments between the 
appropriate applications, with 
very little overhead and data 
checking. UDP is known as a 
best-effort delivery protocol. 
In the context of networking, 
best-effort delivery is referred 
to as unreliable, because 
there is no acknowledgement 
that the data is received at the 
destination. 
With UDP, there are no 
transport layer processes that 
inform the sender if successful 
delivery has occurred



7.1.1.7 The Right Transport Layer Protocol for the Right Application

Application developers 
choose the appropriate 
transport layer protocol 
based on the nature of 
the application



7.1.2.1 Introducing TCP

TCP Provides

ÅConnection-oriented 
conversations by 
establishing sessions
ÅReliable delivery
ÅOrdered data 

reconstruction
ÅFlow control



7.1.2.2 Role of TCP

ÅSequence number (32 bits) - data 
reassembly purposes.

ÅAcknowledgement number (32 bits) -
data that has been received.

ÅHeader length (4 bits) - Řŀǘŀ ƻŦŦǎŜǘ Φ 
length of the TCP segment header.

ÅReserved(6 bits) - reserved for the future.
ÅControl bits (6 bits) - Includes bit codes, or 

flags, that indicate the purpose and 
function of the TCP segment.

ÅWindow size (16 bits) - Indicates the 
number of segments that can be accepted 
at one time.

ÅChecksum(16 bits) - Used for error 
checking of the segment header and data.

ÅUrgent(16 bits) - Indicates if data is 
urgent.



7.1.2.3 Introducing UDP

UDP



7.1.2.4 Role of UDP

UDP is a stateless protocol, 
meaning neither the 
client, nor the server, is 
obligated to keep track of 
the state of the 
communication session. As 
shown in the figure, UDP is 
not concerned with 
reliability or flow control. 
Data may be lost or 
received out of sequence 
without any UDP 
mechanisms to recover or 
reorder the data. If 
reliability is required 
when using UDP as the 
transport protocol, it must 
be handled by the 
application.



7.1.2.5 Separating Multiple Communications

To differentiate the segments 
and datagrams for each 
application, both TCP and UDP 
have header fields that can 
uniquely identify these 
applications. These unique 
identifiers are the port numbers.



7.1.2.6 TCP and UDP Port Addressing



7.1.2.7 TCP and UDP Port Addressing (Cont.)

Å The source port of a client request 
is randomly generated. 

Å This port number acts like a return 
address for the requesting 
application.

Å The transport layer keeps track of 
this port and the application that 
initiated the request so that when 
a response is returned, it can be 
forwarded to the correct 
application. 

Å The requesting application port 
number is used as the destination 
port number in the response 
coming back from the server.



7.1.2.8 TCP and UDP Port Addressing (Cont.)



7.1.2.9 TCP and UDP Port Addressing (Cont.)

Sometimes it is necessary to 
know which active TCP 
connections are open and 
running on a networked host. 

Netstatis an important network 
utility that can be used to verify 
those connections. 

Netstatlists the protocol in use, 
the local address and port 
number, the foreign address and 
port number, and the connection 
state. 



7.1.2.10 TCP and UDP Segmentation

Although services using UDP also track the conversations between 
applications; they are not concerned with the order in which the information 
was transmitted or concerned with maintaining a connection. There is no 
sequence number in the UDP header. UDP is a simpler design and generates 
less overhead than TCP, resulting in a faster transfer of data. 



7.1.2.11 Activity - Compare TCP and UDP Characteristics



7.2.1.1 TCP Reliable Delivery



7.2.1.2 TCP Server Processes

. Any incoming client request 
addressed to the correct socket is 
accepted and the data is passed to 
the server application. 

There can be many simultaneous 
ports open on a server, one for each 
active server application. 

It is common for a server to provide 
more than one service at the same 
time, such as a web server and an 
FTP server



7.2.1.3 TCP Connection Establishment and Termination

ÅURG - Urgent pointer field 
significant

ÅACK - Acknowledgement field 
significant

ÅPSH - Push function
ÅRST - Reset the connection
ÅSYN - Synchronize sequence 

numbers
ÅFIN - No more data from sender
ÅThe ACK and SYN fields are 

relevant to our analysis of the 
three-way handshake



7.2.1.4 TCP Three-way Handshake Analysis - Step 1

Step 1: The initiating client 
requests a client-to-server 
communication session with the 
server. 



7.2.1.5 TCP Three-way Handshake Analysis - Step 2

Step 2: The server 
acknowledges the client-to-
server communication 
session and requests a 
server-to-client 
communication session. 



7.2.1.6 TCP Three-way Handshake Analysis - Step 3

Step 3: The initiating client 
acknowledges the server-to-
client communication session. 



7.2.1.7 TCP Session Termination Analysis

To close a connection, the Finish (FIN) control flag must be set in the segment header. To end each one-
way TCP session, a two-way handshake is used, consisting of a FIN segment and an ACK segment. 
Therefore, to terminate a single conversation supported by TCP, four exchanges are needed to end 
both sessions, as shown in Figure 1


